An Incremental Local Outlier Detection Method in the Data Stream
نویسندگان
چکیده
منابع مشابه
Survey on Outlier Detection in Data Stream
Data mining provides a way for finding hidden and useful knowledge from the large amount of data .usually we find any information by finding normal trends or distribution of data .But sometimes rare event or data object may provide information which is very interesting to us .Outlier detection is one of the task of data mining .It finds abnormal data point or sequence hidden in the dataset .Dat...
متن کاملComparative Study of Incremental Learning Algorithms in Multidimensional Outlier Detection on Data Stream
Multi-dimensional outlier detection (MOD) over data streams is one of the most significant data stream mining techniques. When multivariate data are streaming in high speed, outliers are to be detected efficiently and accurately. Conventional outlier detection method is based on observing the full dataset and its statistical distribution. The data is assumed stationary. However, this convention...
متن کاملIncremental Local Evolutionary Outlier Detection for Dynamic Social Networks
Numerous applications in dynamic social networks, ranging from telecommunications to financial transactions, create evolving datasets. Detecting outliers in such dynamic networks is inherently challenging, because the arbitrary linkage structure with massive information is changing over time. Little research has been done on detecting outliers for dynamic social networks, even then, they repres...
متن کاملA Survey on Outlier Detection Techniques in Dynamic Data Stream
Outlier detection has significant importance in the data mining domain. Applications which contain streaming data flow may have many abnormal or outlier data and these applications require efficient outlier detection techniques to detect and analyze these abnormal patterns. Outlier detection is the process of detecting patterns in the data which do not adhere to the normal behavior or data. The...
متن کاملOutlier Detection by Consistent Data Selection Method
Often the challenge associated with tasks like fraud and spam detection[1] is the lack of all likely patterns needed to train suitable supervised learning models. In order to overcome this limitation, such tasks are attempted as outlier or anomaly detection tasks. We also hypothesize that outliers have behavioral patterns that change over time. Limited data and continuously changing patterns ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Sciences
سال: 2018
ISSN: 2076-3417
DOI: 10.3390/app8081248